Volitional modulation of optically recorded calcium signals during neuroprosthetic learning
نویسندگان
چکیده
منابع مشابه
Active calcium responses recorded optically from nerve terminals of the frog neurohypophysis
Voltage-sensitive dyes were used to record by optical means membrane potential changes from nerve terminals in the isolated frog neurohypophysis. Following the block of voltage-sensitive Na+ channels by tetrodotoxin (TTX) and K+ channels by tetraethylammonium (TEA), direct electric field stimulation of the nerve terminals still evoked large active responses. These responses were reversibly bloc...
متن کاملApplications of cortical signals to neuroprosthetic control: a critical review.
Cortical signals might provide a potential means of interfacing with a neuroprosthesis. Guidelines regarding the necessary control features in terms of both performance characteristics and user requirements are presented, and their implications for the design of a first generation cortical control interface for a neuroprosthesis are discussed.
متن کاملClosed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals
OBJECTIVE A neuroprosthesis using a brain-machine interface (BMI) is a promising therapeutic option for severely paralyzed patients, but the ability to control it may vary among individual patients and needs to be evaluated before any invasive procedure is undertaken. We have developed a neuroprosthetic hand that can be controlled by magnetoencephalographic (MEG) signals to noninvasively evalua...
متن کاملNeuroprosthetic Decoder Training as Imitation Learning
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder a...
متن کاملAdvances in Neuroprosthetic Learning and Control
Significant progress has occurred in the field of brain-machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Neuroscience
سال: 2014
ISSN: 1097-6256,1546-1726
DOI: 10.1038/nn.3712